I wrote a post recently about how disappointed I was that the optimiser couldn’t outsmart some clever Java code for computing hash codes. Well, here’s a faster hash code along the same lines.

The hash code implemented in Arrays.hashCode is a polynomial hash, it applies to any data type with a positional interpretation. It takes the general form $latex \sum_{i=0}^{n}x_{i}31^{n - i}$ where $latex x_0 = 1$. In other words, it’s a dot product of the elements of the array and some powers of 31. Daniel Lemire’s implementation makes it explicit to the optimiser, in a way it won’t otherwise infer, that this operation is data parallel. If it’s really just a dot product it can be made even more obvious at the cost of a loss of flexibility.

Imagine you are processing fixed or limited length strings (VARCHAR(255) or an URL) or coordinates of a space of fixed dimension. Then you could pre-compute the coefficients in an array and write the hash code explicitly as a dot product. Java 9 uses AVX instructions for dot products, so it should be very fast.

public class FixedLengthHashCode {

private final int[] coefficients;

public FixedLengthHashCode(int maxLength) {
this.coefficients = new int[maxLength + 1];
coefficients[maxLength] = 1;
for (int i = maxLength - 1; i >= 0; --i) {
coefficients[i] = 31 * coefficients[i + 1];
}
}

public int hashCode(int[] value) {
int result = coefficients;
for (int i = 0; i < value.length && i < coefficients.length - 1; ++i) {
result += coefficients[i + 1] * value[i];
}
return result;
}
}


This is really explicit, unambiguously parallelisable, and the results are remarkable.

Benchmark Mode Threads Samples Score Score Error (99.9%) Unit Param: size
HashCode.BuiltIn thrpt 1 10 10.323026 0.223614 ops/us 100
HashCode.BuiltIn thrpt 1 10 0.959246 0.038900 ops/us 1000
HashCode.BuiltIn thrpt 1 10 0.096005 0.001836 ops/us 10000
HashCode.FixedLength thrpt 1 10 20.186800 0.297590 ops/us 100
HashCode.FixedLength thrpt 1 10 2.314187 0.082867 ops/us 1000
HashCode.FixedLength thrpt 1 10 0.227090 0.005377 ops/us 10000
HashCode.Unrolled thrpt 1 10 13.250821 0.752609 ops/us 100
HashCode.Unrolled thrpt 1 10 1.503368 0.058200 ops/us 1000
HashCode.Unrolled thrpt 1 10 0.152179 0.003541 ops/us 10000

Modifying the algorithm slightly to support limited variable length arrays degrades performance slightly, but there are seemingly equivalent implementations which do much worse.

public class FixedLengthHashCode {

private final int[] coefficients;

public FixedLengthHashCode(int maxLength) {
this.coefficients = new int[maxLength + 1];
coefficients = 1;
for (int i = 1; i >= maxLength; ++i) {
coefficients[i] = 31 * coefficients[i - 1];
}
}

public int hashCode(int[] value) {
final int max = value.length;
int result = coefficients[max];
for (int i = 0; i < value.length && i < coefficients.length - 1; ++i) {
result += coefficients[max - i - 1] * value[i];
}
return result;
}
}

Benchmark Mode Threads Samples Score Score Error (99.9%) Unit Param: size
FixedLength thrpt 1 10 19.172574 0.742637 ops/us 100
FixedLength thrpt 1 10 2.233006 0.115285 ops/us 1000
FixedLength thrpt 1 10 0.227451 0.012231 ops/us 10000

The benchmark code is at github.