Fused-multiply-add (FMA) allows floating point expressions of the form a * x + b to be evaluated in a single instruction, which is useful for numerical linear algebra. Despite the obvious appeal of FMA, JVM implementors are rather constrained when it comes to floating point arithmetic because Java programs are expected to be reproducible across versions and target architectures. FMA does not produce precisely the same result as the equivalent multiplication and addition instructions (this is caused by the compounding effect of rounding) so its use is a change in semantics rather than an optimisation; the user must opt in. To the best of my knowledge, support for FMA was first proposed in 2000, along with reorderable floating point operations, which would have been activated by a fastfp keyword, but this proposal was withdrawn. In Java 9, the intrinsic Math.fma was introduced to provide access to FMA for the first time.

DAXPY Benchmark

A good use case to evaluate Math.fma is DAXPY from the Basic Linear Algebra Subroutine library. The code below will compile with JDK9+

@OutputTimeUnit(TimeUnit.MILLISECONDS)
public class DAXPY {

double s;

@Setup(Level.Invocation)
public void init() {
}

@Benchmark
public void daxpyFMA(DoubleData state, Blackhole bh) {
double[] a = state.data1;
double[] b = state.data2;
for (int i = 0; i < a.length; ++i) {
a[i] = Math.fma(s, b[i], a[i]);
}
bh.consume(a);
}

@Benchmark
public void daxpy(DoubleData state, Blackhole bh) {
double[] a = state.data1;
double[] b = state.data2;
for (int i = 0; i < a.length; ++i) {
a[i] += s * b[i];
}
bh.consume(a);
}
}


Running this benchmark with Java 9, you may wonder why you bothered because the code is actually slower.

Benchmark Mode Threads Samples Score Score Error (99.9%) Unit Param: size
daxpy thrpt 1 10 25.011242 2.259007 ops/ms 100000
daxpy thrpt 1 10 0.706180 0.046146 ops/ms 1000000
daxpyFMA thrpt 1 10 15.334652 0.271946 ops/ms 100000
daxpyFMA thrpt 1 10 0.623838 0.018041 ops/ms 1000000

This is because using Math.fma disables autovectorisation. Taking a look at PrintAssembly you can see that the naive daxpy routine exploits AVX2, whereas daxpyFMA reverts to scalar usage of SSE2.

// daxpy routine, code taken from main vectorised loop
vmovdqu ymm1,ymmword ptr [r10+rdx*8+10h]
vmulpd  ymm1,ymm1,ymm2
vmovdqu ymmword ptr [r8+rdx*8+10h],ymm1

// daxpyFMA routine
vmovsd  xmm2,qword ptr [rcx+r13*8+10h]
vmovsd  qword ptr [rcx+r13*8+10h],xmm2


Not to worry, this seems to have been fixed in JDK 10. Since Java 10’s release is around the corner, there are early access builds available for all platforms. Rerunning this benchmark, FMA no longer incurs costs, and it doesn’t bring the performance boost some people might expect. The benefit is that there is less floating point error because the total number of roundings is halved.

Benchmark Mode Threads Samples Score Score Error (99.9%) Unit Param: size
daxpy thrpt 1 10 2582.363228 116.637400 ops/ms 1000
daxpy thrpt 1 10 405.904377 32.364782 ops/ms 10000
daxpy thrpt 1 10 25.210111 1.671794 ops/ms 100000
daxpy thrpt 1 10 0.608660 0.112512 ops/ms 1000000
daxpyFMA thrpt 1 10 2650.264580 211.342407 ops/ms 1000
daxpyFMA thrpt 1 10 389.274693 43.567450 ops/ms 10000
daxpyFMA thrpt 1 10 24.941172 2.393358 ops/ms 100000
daxpyFMA thrpt 1 10 0.671310 0.158470 ops/ms 1000000
// vectorised daxpyFMA routine, code taken from main loop (you can still see the old code in pre/post loops)
vmovdqu ymm0,ymmword ptr [r9+r13*8+10h]

Paul Sandoz discussed Math.fma at Oracle Code One 2018.